2 - 8 Proving Angle Relationships

Protractor Postulate

Given \overrightarrow{AB} and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on either side of \overrightarrow{AB} , such that the measure of the angle formed is r.

Angle Addition Postulate:

If R is in the interior of \angle PQS, then $m\angle$ PQR + $m\angle$ QRS = $m\angle$ PQS. If $m\angle$ PQR + $m\angle$ QRS = $m\angle$ PQS, then R is in the interior of \angle PQS.

Ex: If $m\angle ABD = 44$ and $m\angle ABC = 88$, find $m\angle DBC$.

Theorem 2.3: Supplement Theorem If two angles form a linear pair, then they are supplementary.

Theorem 2.4: Complement Theorem If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles.

Ex: If $\angle 1$ and $\angle 2$ form a linear pair and m $\angle 2$ = 67, find m $\angle 1$.

$$m \le 1 + m \le 2 = 180$$
 $- + 67 = 180$
 113°

Theorem 2.5:

Congruence of angles is reflexive, symmetric, and transitive.

Reflexive: ∠\⇔∠(

Symmetric: If ∠1 = L2, then L2 = L1.

Transitive: IF LISLZ and LZ = L3, then LI=L3.

Prove the symmetric property...

Given: $\angle A \cong \angle B$

Prove: $\angle B \cong \angle A$

<u>Statements</u>	Reasons
1. ∠A ≅ ∠B	1. Given
2.mLA = mLB	2. defn.of <u>~</u>
3. mlB=mlA	3. symmetric
4. ∠B ≃∠A	4. defn. of ≃

Theorem 2.6:

Angles supplementary to the same angle or congruent angles are congruent.

Theorem 2.7:

Angles complementary to the same angle or to congruent angles are congruent.

Given: ∠1 and ∠3 are complementary

∠2 and ∠3 are complementary

Prove: $\angle 1 \cong \angle 2$

Statements

- 1. 41, 43 comp 42, 43 comp
- 2.ml+ml3=90 ml2+ml3=90
- 3.ml+ml3=ml2+ ml3 -ml3
- 4. mll=ml2"43
- 5. ムし 当ん2

Reasons

- 1. Given
- 2. defn. of comp.
- 3. Substitution
- 4. Subtraction
- 5. defn. of ≥

Given: ∠1 and ∠2 form a linear pair

∠2 and ∠3 form a linear pair

Prove: $\angle 1 \cong \angle 3$

<u>Statements</u>	Reasons
1. LI, LZ linear	1. Given
L2, L3 linear	, , , , , , , , , , , , , , , , , , ,
2. 21, L2 supp.	2. Thm. 2.3
42,43 supp.	
3. ∠12/3	3. Thm. 2.6

Ex: If $\angle 1$ and $\angle 2$ are vertical angles and $m \angle 1 = x$ and $m \angle 2 = 228 - 3x$, find $m \angle 1$ and $m \angle 2$.

$$M \le M \le 2$$

 $X = 228 - 3x$
 $+3x = 228$
 $X = 228$
 $X = 57$

Theorem 2.9:

Perpendicular lines intersect to form four right angles

Theorem 2.10:

All right angles are congruent.

Theorem 2.11:

Perpendicular lines form congruent adjacent angles.

Theorem 2.12:

If two angles are congruent and supplementary, then each angle is a right angle.

Theorem 2.13:

If two congruent angles form a linear pair, then they are right angles.

Homework:

3 - 4 WS